Wear by corrosion of refractory materials remain a major concern for plant operators, manufacturers of refractories, installers and refractory engineers involved in R&D and Education in this field of expertise.

This second volume on the theme of corrosion is yet to be followed by volume 2C : The Impact of Corrosion.

The aims are 1) to describe how to evaluate corrosion damages under laboratory conditions and to establish correlations with in-plant testing; 2) to describe how to determine the materials characteristics once corroded, introducing the description of in-situ and advanced methods, with a specific section on castables; 3) to review ways to minimize corrosion damages selecting the appropriate material and the best installation procedure and adopting key standard operating procedures; 4) to provide the tools to learn from theories, concepts and various disciplines.

Seven authors have been recruited by FIRE, to cover the subject in three main chapters: I Testing Methods: 1.1 Laboratory Testing Methods: 1.1.1 Tesing up to 1600C – P. Quirmbach; 1.1.2 Testing up to 2000C – P. Piluso 1.1.3 Testing Composite Materials – F. Rebillat 1.2 In-Plant testing vs Full Testing – M. Rigaud,T. Vert.

II Characterization Methods for Corroded Samples. 2.1 Traditional Methods – M. Rigaud; 2.2 Insitu and Advanced Methods – J. Poirier; 2.3 Specific Methods for Castables – C. Worhmeyer.

III Ways to Minimize Corrosion Damages. 3.1 Ways to Minimize L-S Attack – M. Rigaud; 3.2 Ways to minimize G-S Attack – J. Poirier; 3.3 Ways to learn from Experience – M. Rigaud

The content of the book has been outlined and reviewed by fellow experts (industrials and academics). It represents a major contribution to appreciate the impact of corrosion of refractories on the plant availability and quality of products.
Table of Contents

Prologue v
Foreword vii
Preface viii
List of the Editorial Review Board Members x
The Authors xi
F.I.R.E. xiv

Chapter 1

Testing Methods for Corrosion

1. Laboratory Testing Methods up to 1600 °C 1
 1.1. Introduction 1
 1.2. Corrosion provoked by oxide melts and metal melts 1
 1.2.1. Pill test and disc test 2
 1.2.2. Crucible test 2
 1.2.3. Induction furnace test 4
 1.2.4. Test with rotating sample – Finger test by dipping 9
 1.2.5. Test with rotating slag – Rotary furnace test 10
 1.3. Corrosion provoked by salts 12
 1.4. Corrosion provoked by gases 13
 1.4.1. Test procedure in lab scale: 14
 1.4.2. Corrosion caused by oxidative gases – oxygen and steam in contact with silicon carbide 15
 1.4.3. Carbon monoxide corrosion 16
 1.4.4. Hydrogen corrosion 18
 1.5. Outlook 21
 1.6. References 21
2. Laboratory Testing methods up to 2000 °C 23
 2.1. Introduction 23
1.2. Observation of the corroded refractory at a macroscopic scale: that of the refractory lining (from ten meters to ten centimeters)

1.3. Observation of the corroded refractory at a mesoscopic scale: that of the refractory sample (from ten centimeters to ten millimeters)

1.4. Analysis of the corroded refractory at micro and nanoscopic scale: that of the microstructure and atomic structure of the material, from a tenth of a millimeter (10^{-4} m) to the nanometer (10^{-9} m)

1.4.1. Chemical analysis
1.4.2. Characterisation of the porosity
1.4.3. Characterization of the microstructure by optical microscopy
1.4.4. Characterization of microstructure by cathodoluminescence (CL) microscopy

1.5. Scanning electron microscopy (SEM) and X-ray spectroscopy analysis (EDS, WDS)

1.5.1. Secondary electron and backscattered electron imaging
1.5.2. Quantitative image analysis of microstructures
1.5.3. Analysis by energy dispersive X-ray spectroscopy (EDS) and by wavelength-dispersive X-ray spectroscopy (WDXS or WDS)

1.6. Electron Probe Microanalyzer

1.7. Transmission electron microscopy (TEM)

1.8. Analysis of refractory structures by X-Ray diffraction

1.9. Thermal analyses

1.9.1. Thermogravimetric analysis
1.9.2. Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC)

1.10. Conclusion

1.11. References

2. In situ and Advanced Characterization Methods

2.1. Introduction
2.2. Transport properties (permeability and capillary suction measurements) 135
 2.2.1. Transport properties required for the simulation of slag impregnation 135
 2.2.2. Intrinsic permeability determination 138
 2.2.3. Determination of capillary curve parameters 151

2.3. Thermo-physical properties of molten oxides (density, viscosity and surface tension) using levitation techniques 153

2.4. Corrosion kinetics using High Temperature X Ray Diffraction (HT XRD) 160
 2.4.1. Corrosion of alumina by lime/alumina/silica slag – Thermodynamics and ex situ analyses 160
 2.4.2. Corrosion tests and time-resolved high-temperature X-ray Diffraction analyses 166
 2.4.3. Applications 167

2.5. The characterization of phase transformations using Raman spectroscopy 171
 2.5.1. Ex-situ Raman analysis: application on olivine 173
 2.5.2. High temperature in-situ Raman analysis: application on zirconia and Yttria 175

2.6. Conclusion 179

2.7. References 179

3. Specific methods to characterize castables 186

3.1. Methods to characterize castables during dry and wet mixing and curing process: 187
 3.1.1. Castable dry-mix: 187
 3.1.2. Castable wet-mix: 189

3.2. Castables during hardening and curing process 198
 3.2.1. Cup test 198
 3.2.2. Ultrasonic profile 198
 3.2.3. Exothermal profile 203
 3.2.4. pH profile and ion concentration in the pore water 204
 3.2.5. Electrical conductivity profile 205
 3.2.6. Early age strength measurements 206
 3.2.7. Early age shrinkage measurement (during curing) !! 207
3.3. Methods to characterize castables during the dry-out and first heating process 209
3.3.1. Permeability and Pressure measurements 209
3.3.2. Permanent Linear Change (PLC) 215
3.3.3. Restrained PLC 217
3.3.4. Thermal Expansion 218
3.3.5. Strength after firing, measured at room temperature alert 220
3.3.6. Microstructural changes 220
3.3.7. Young’s Modulus measurement during firing 222
3.3.8. Resonance Frequency Damping Analysis (RFDA) 224
3.3.9. Resistance to thermal shocks and to thermal cycling: 228
3.3.10. Thermal cycling test in a temperature gradient 230

3.4. Methods to characterize castables in contact with slag and metals 230
3.4.1. Slag wettability 230
3.4.2. Impact of temperature and chemical gradient on Young’s modulus 233
3.4.3. Castable dissolution kinetics in slag 235
3.4.4. Corrosion as a function of furnace pressure 236
3.4.5. Corrosion tests for castables for aluminium metal contact applications 237
3.4.6. Thermal shock test for castables with slag penetration layer 238

3.5. Simulation methods 239
3.5.1. Finite Element Method (FEM) 239
3.5.2. Thermodynamic calculation software 240

3.6. Summary 240

3.7. References 240

CHAPTER 3

Ways to minimize Corrosion Damage

1. The S-L-G Characteristics 247
1.1. The solid (S) interface 247
1.2. Molten metal characteristics 250
1.3. Molten slag characteristics 252
1.4. The Molten salt characteristics 254
1.5. Gaseous environment characteristics 257

2. Ways to minimize L-S Attacks 259
 2.1. Ways to minimize penetration 259
 2.1.1. Texture adjustments 260
 2.1.2. Compositional changes of the refractory materials 260
 2.1.3. Compositional changes of the penetrants 262
 2.1.4. Adjusting the gradient of temperature at the hot face 262

 2.2. Ways to minimize Dissolution 263
 2.2.1. Texture adjustments 264
 2.2.2. Compositional changes of the refractory materials. 264
 2.2.3. Compositional changes of the liquid characteristics 265
 2.2.4. Adjusting the Gradient of Temperature at the hot Face 266

3. Ways to minimize G – S Attacks 268
 3.1. Texture Adjustments 268
 3.2. Appropriate Selection of Refractory Materials 269
 3.3. Adjusting the Environmental Conditions 269
 3.4. Adjusting the Thermal Gradient at the Interface 270

4. Concluding Remarks: Ways to learn from Experience 270

5. References 271

Index 275